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PREFACE 

The investigation reported herein was conducted at the U. S. Array 

Engineer Waterways Experiment Station (WES) for the Defense Nuclear 

Agency under Nuclear Weapons Effects Subtask SB209, Work Unit UU, 

"Dynamic Pore Pressure Model." 

This investigation was conducted and the report written by 

Dr. George Y. Baladi of the Geomechanics Division (GD), Structures 

Laboratory (SL), during the period October 1977-June 1979 under the 

general direction of Mr. Bryant Mather, Acting Chief, SL, and Dr. J. G. 

Jackson, Jr., Chief, GD. 

COL John L. Cannon, CE, and COL Nelson P. Conover, CE, were Com- 

manders and Directors of WES during the investigation and publication 

of this report. Mr. F. R. Brown was Technical Director. 
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i. 

CONVERSION FACTORS, METRIC (SI) TO U. S. CUSTOMARY 
UNITS OF MEASUREMENT 

Units of measurement used in this report can be converted as follows: 

 Multiply  By To Obtain 

Metric (SI) to U. S. Customary 

T.» 

centimetres 

centimetres per millisecond 

grams per cubic centimetre 

metres 

metres per millisecond 

millimetres 

0.3937007 

0.3937007 

62.U2797 

3.280839 

3.280839 

0.03937007 

inches 

inches per 
millisecond 

pounds (mass) 
per cubic foot 

feet 

feet per 
millisecond 

inches 

U. S. Customary to Metric (SI) 

bars 

kilobars 

100.00 

100.00 

kilopascals 

megapascalB 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Earth materials are multiphase systems (Reference l) that consist 

in general of solid particles (possibly cemented), water, and gas. The 

intrinsic response of such materialr to externally applied loads is 

extremely complicated. To model this response for a particular material, 

one must resort to the theory of continuum mechanics and have available 

an appropriate constitutive relation. The solution of earth structure 

problems then becomes a mathematical formalism that can be achieved 

numerically or by other means. 

In recent years, primarily under the sponsorship of the Defense 

Kuclear Agency (DBA), considerable progress has been made in the devel- 

opment of mathematical models for the study of ground shock effects in 

soil and/or rock media (References 2 through 12). The models are used 

in two-dimensional (2D) computer code calculations that help define the 

ground shock environment of current and planned hardened defense facili- 

ties. The requirement for more advanced models can be attributed to the 

desire for a better mathematical approximation of the observed stress- 

strain properties of earth materials. Consequently, several quite 

complicated nonlinear elastic-ideally plastic (References 2 through M, 

variable moduli-type (References 5 through 8), and nonlinear elastic- 

plastic work-hardening (References 9 through 12) constitutive models 

have been developed and used by the DNA soil and rock mechanics communi- 

ties. A detailed summary of the advantages and disadvantages of each 

type of model is given in Reference 3. A brief historical development 

of these model« is given in Reference 12. All of the above models are 

three-dimensional, either Isotropie or transverse-isotropic, and can 

simulate to various degrees the observed highly nonlinear and hysteretic 

behavior of earth media, with some of them predicting shear-induced 

volume change; however, they all have in common that they can simulate 

only single-phase systems. 

■_  
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Treatment of two-phase systems (water and solid) for fluid- 

saturated earth materials within the framework of elastic-plastic 

constitutive models was first attempted by Roscoe and his coworkers at 

Cambridge University (Reference 13). They successfully developed 

several two-dimensional models for describing the stress-strain-pore 

pressure response of saturated clay. The solid skeleton and the fluid 

constituent of their two-phase system (saturated clay) were assumed to 

be incompressible, thus allowing the treatment of undrained loading 

conditions by specifying de  * 0 (de., = increment of volumetric 

strain).  The assumption of the incompressibility of the solid skeleton 

and the fluid constituent is reasonable since in most conventional 

geotechnical problems the loading conditions are static and the pressure 

levels of interest are very small. In 1976 and 1977. several isotropic 

two-phase constitutive models for saturated cohesionless soils were 

developed (References Ik  and 15) at the U. S. Army Engineer Waterways 

Experiment Station (WES). These models also used the concept of 

dc,, =0 to simulate undrained test conditions for fluid-saturated 
kk 

granular materials. In contrast to the Cambridge models (Reference 13), 

however, the WES models are three-dimensional and provide greater flexi- 

bility in fitting test data for a broad range of behavior. The models 

documented in References 13, Ik,  and 15 provide the means to perform 

effective stress analyses for problems involving static-type loading 

conditions. Because of their assumption that the solid skeleton and the 

water are incompressible (i.e., de.. * 0 ), however, they are not 

suitable for problems involving transient or dynamic-type loading con- 

ditions, such as ground shock problems. The elimination of the assump- 

tion of incompressibility of the solid skeleton and water not only pro- 

vides a means of solving dynamic problems but also provides a means for 

simulating partially saturated materials (i.e., solid skeleton, water, 

and gas). The model developed in this report closely parallels the devel- 

opments reported in Reference lk with the exception that the assumption 

of incompressibility of the solid skeleton and water is eliminated. 

For convenience, symbols and abbreviations are listed and defined, in 
the Notation (Appendix B). 
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The development of the present model is based on the fact that cur- 

rent single-phase and two-phase constitutive models will each predict 

a different deformation path for a given stress loading, vith the two- 

phase model achieving the better agreement with physics and data. By 

implication, a two- or three-phase constitutive model will also predict 

better ground motion histories than the current crop of single-phase 

ground shock models. To what extent and in what situations remain to 

be seen. 

i 
> 
I 
€ 
i§ r 
I 

1.2 OBJECTIVE 

The overall objective of this study was to develop a completely 

general, three-dimensional, elastic-plastic, work-hardening constitutive 

relationship for simulating the behavior of isotropic three-phase earth 

materials. 

1.3 SCOPE 

One of the constraints of this study was that the model should be 

in a form suitable for use with current finite-difference techniques 

(such as the LAYER code) for the computation of ground motions, total 

and effective stresses, and pore pressures produced within earth masses 

by explosion-induced ground shock. The work involved five steps: 

(1) extending the mathematical model documented in Reference lU  to allow 

for volume changes, (2) fitting the model to available drained and un- 

drained mechanical property test data, (3) validating the model by 

calculating the pore pressure responses for various laboratory test 

boundary conditions and comparing the predictions with actual teat data, 

(•*} devising an efficient numerical logic for calculating time histories 

of effective stress, pore pressure, and associated ground motions for 

blast-oriented problems, and (5) incorporating the model and its calcula- 

tional logic into LAYER and performing a demonstration calculation. 

The concept of effective stress and the mechanical behavior of soil 

are presented in Chapter 2. In Chapter 3, the development of a single- 

phase, elastic-plastic constitutive model, parallel to that reported in 

Reference lit, is presented. The application of this model to treat 

11 
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multiphase systems is explained in Chapter k,    The quantitative behavior 

of the multiphase model under simulated triaxial test condition« is 

examined in Chapter 5» Chapter 6 describes mathematical fite developed 

with available drained and undrain<>d mechanical property test data for 

Campbell Swamp sand and presents comparisons of model-predicted 

responses with the measured laboratory behavior. The results of the ?P 

demonstration calculation are presented in Chapter ?. Chapter 8 

summarises key aspects of the model and offers recommendations for its 

quantitative evaluation. Appendix A reviews ti'e fundamental basis of 

elastic-plastic constitutive models and is included for reference 

purposes and future use. 
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CHAPTER 2 

EFFECTIVE STRESS CONCEPT AND MECHANICAL BEHAVIOR OF SOIL 

Earth material, in its general form, is composed of a complex 

assemblage of discrete particles of varying shapes and orientation in a 

compact, possibly cemented, array. These particles may range in magni- 

tude from the microscopic elements of a clay soil to the macroscopic 

boulders of a rock fill. The voids in the array may be filled with 

water or air and usually contain both. Before a constitutive model 

describing the behavior of these materials under an applied stress 

system can be developed, it is necessary to consider how these stresses 

are distributed among the several components comprising the aggregate 

and to understand, in general terms, the mechanical behavior of these 

assemblages. The emphasis throughout the remainder of this report will 

be on earth materials that are better described as soils than rocks; 

however, the model, in principle, is applicable to both. 

2.1 EFFECTIVE STRESS CONCEPT 

The normal stress components at a point in a soil body may be 

divided into two parts (Reference 16): The stress carried by the solid 

skeleton, referred to as the effective stress, and the stress carried 

by the pore fluid, referred to as the pore pressure. The pore pressure, 

in turn, can be divided into two additional parts: the stress carried 

by the water and the stress carried by the air.  According to Refer- 

ences 17, 18, and 19, total stress can be expressed (in indicial 

notation) as 

i.i     ij    [a    A\»     *;J ij (2.1) 

Indices take on values of 1, 2, or 3. A repeated index is to be 
summed over its range. A comma between subscripts reprer^nts a 
derivative. Quantities are referred to rectangular Carteb.an 
coordinates X . 

13 
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0ij • total stress tensor 

°iJ " eff«<*ive stress tensor 

a " 2°™ air pressure 

^^^^.^W^TJ^^f^W-f^M^f^^WW^1^^-" ' '''"'^'■^^f^'W^Wf^^^^^?*^1^-'^^ 

Pv ■ P0™ **ter pressure 

«ij * Becker delta-/*' * ' J 

*0, i + j 

Nation 2.1 can be rewritten 

to the pore volume 

U " °ij * «« ij (2.2) 

in which u is the total pore pressure representing the combined e 

of the pore air pressure and the pore water pressure, i.e., ffect 

For » fully saturated soil, 
X - 0 . •    X     i , and for a completely dry «oil, 

F°r * triaxi^ test performed on a cyli„dr<    , 
~ete astern), the «tres.es are ^2^ """* ^ 

(2.3) 

o ■ o' ♦ u 
B    t 

0»O »o'+u*0*+u o   r   8      r 

where a%  , or , and oe are, respectively, the axial, radial, 

tangential total stress components and a*  , o' , and o' art» t 
•   r      e 

corresponding effective stress components. The mechanical behavi 

(2.M 

or of 

Ik 
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saturated and partially saturated Boils tested under triaxial conditions 

is discussed in the following section. 

2.2 MECHANICAL BEHAVIOR OF SOIL 

The mechanical behavior of soils subjected to externally applied 

loads is quite complicated. Unlike the properties of most engineering 

materials, soil stress-strain properties are greatly affected by such 

factors as soil structure, degree of voids saturation, drainage condi- 

tions during loading, loading rate, loading history, and current stress 

state. In this report, the term soil structure is loosely used to 

recognize that "microvariables" such as grain size; grain size distribu- 

tion; grain shape, surface texture, and mineralogy; and grain orientation, 

packing, and cementation, or bonding, all play an interrelated role in 

the complex mechanical response of soils. For practical purposes these 

microvariables are generally not individually characterized; rather 

"engineering" a-tables such as void ratio and relative density, which 

are more amenable to measurement and certainly more useful to analysts, 

and which account in a lumped sense for the interplay of many of the 

microvariables, are used to help characterize, understand, and predict 
the soils response. 

Figure 2.1 shows a typical behavior of soil subjected to a hydro- 

static state of stress. It is clear from this figure that soils, in 

general, exhibit a nonlinear compacting hydrostat. 

Figure 2.2 shows a typical variety of stress-strain-pore pressure 

response curves manifested by saturated soils tested in undrained shear 

in a triaxial compression device.  The three specimens were first 

isotropically consolidated to the same effective mean normal stress 

level (point 2), then sheared undrained. The shear curves marked "2 •*■ 

3" show the typical response of a normally consolidated clay or a very 

loose sand. The curves marked "2 -*■ 5" show behavior typical of an over- 

consolidated clay or a very dense sand. Within the extreme limits of 

These tests must include independent measurements of radial 
deformation. 
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those loose and dense soil responses, there is a graduated response, 

typified herein by the curves marked "2 + U." The latter response 

depends on the state of compaction (consolidation) of the material. It 

is clear from this figure that the effective stress is the only part of 

the total stress that affects soil shear strength. 

Figure 2.3 shows typical (qualitative) stress-strain response 

curves for soils sheared under drained triaxial compression conditions; 

i.e., the curves marked "l" represent dense sand or overconsolidated 

clay, while the curves marked "2" depict response typical of loose sand 

or normally consolidated clay. 

In Chapter 3 the mathematical development of a total-stress (single- 

phase), elastic-plastic, Isotropie constitutive relationship that 

can qualitatively describe most of the behavior shown in Figures 2.1 

through 2.3 is presented. This model is unable to simulate the postpeak 

work-softening shear response exhibited, for example, by material 1 in 

Figure 2.3. 

16 
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Figure 2.1 Typical behavior of a dry or drnined soil 
under hydrostatic loading nnd unlonding. 
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Figure 2.2   Typical behavior of saturated »oil tested under undrained 
triaxial test conditions. 
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CHAPTER 3 

ELASTIC-PLASTIC CONSTITUTIVE MODEL 

The model described in this chapter is a fundamental element of the 

multiphase model discussed in Chapter k.    Hence, the understanding of 

this model will smooth the transition to the multiphase model. 

The basic theory of elastic-plastic constitutive models for single- 

phase (solid) materials is presented in detail in Appendix A. The 

elastic behavior of these models is defined by Equations A.12 through 

A.16 of Appendix A. The plastic behavior is described by Equations A.17 

through A.28. The complete elastic-plastic description is expressed by 

Equation A.29 and/or Equation A.30. These equations are used herein, 

with selected mathematical forms of the various response functions con- 

tained in the model, to describe how most of the typical soil responses 

presented in Chapter 2 can be simulated with a more or less conventional 

elastic-plastic model. 

3.1 ELASTIC BEHAVIOR 

The behavior of the model in the elastic (recoverable) range is 

governed by the elastic bulk and shear moduli (Equation A."6 of Appen- 

dix A). The elastic bulk modulus describes the unloading stress-strain 

response of a hydrostatic compression test (Figure 3.1). If is sug- 

gested that for most isotropic earth materials the elastic bulk modulus 

can be taken as a function of the mean normal stress,  P , or the first 
o 

invariant of the stress tensor" 

is chosen: 

J. (J. ■ 3P). The following expression 

1 - K, -11 - Ki exH-Vi)] (3.1) 

The elastic bulk modulus could also be a function of the plastic 
volumetric strain. 
In this report tension is considered as negative. 
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where 

K. ■ initial elastic bulk modulus 

K. and K- ■ material constants 

Equation 3.1 is illustrated in Figure 3.2. Equation 3.1 together with 

Equation A.13 of Appendix A indicates that the material constants 

K. , K- , and K. can be readily determined experimentally from the 

unloading hydrostatic compression test results, as illustrated in 

Figure 3.1. 

The elastic shear modulus    must account for the curvature observed 

ii. unloading stress difference-strain difference results obtained from 

triaxial compression tests (Figure 3.3).    For this report, the elastic 

shear modulus is assumed to be a function of the second invariant of the 

stress deviation tensor,    J0 , and the plastic volumetric strain, 
P 

<kk   = 

Ü< ,— P 
G ■ YTT fl " Gi e*P("G

?^)] + G
3 [1 - exp(-Cu ^)] (3.2) 

where 

G   ■ initial elastic shear modulus 

G.   ,    G., i    G    , and    G,   ■ material constants 

Equation 3.2 is illustrated in Figure 3.1».    Equation 3.2 together with 

Equation A.13 of Appendix A indicates that the material constants 

G Gl « 
G, , and G. 
3      *» 

can be readily determined from the 
i * "1 ' "2 • 

slopes of experimental unloading stress-strain curves obtained from a 

series of triaxial shear tests conducted at different confining pres- 

sures (Figure 3.3). 

The functional forms of the bulk and shear moduli (Equations 3.1 and 
3.2) could include more terms and, hence, provide more flexibility 
in fitting the behavior of any specific material (ef. Reference 10). 

a 

r 

II   I i Tiff i ah -'.üliiittttÜ i -   mütumii    I    di MM, ■J<^;"—»*itti äüa fa^MMtiMMiMM 



'^^Bw*iSSft|rttji(B^(M^^,...: 
^%M^^'^'**,*^^Sfte«P-::W*L..;:S,,,1.s 

~^^«^;:^||».ft||tj.fejfr^^^ 

3.2 PLASTIC BEHAVIOR 

For the plastic behavior, the loading function £    (Equation A.9 

of Appendix A) is assumed to be isotropic and to consist of tvo parts 

(Figure 3.5): an ultimate failure envelope which serves to limit the 

maximum shear stresses attainable by the material and an elliptically 

shaped strain-hardening yield surface that produces plastic volumetric 

and shear strains as it moves (Reference 10). The failure envelope 

portion of the loading function is assumed to be of the generalized 

Prager-Drucker type and is mathematically described by 

f(Jl* ^ * ^"- CA-Cexp (-BJ^j-o 

and the strain-hardening yield surface is described by 

(3.3) 

(3.1.) 

where A , B , and C are material constants (Figure 3.5); R is a 

parameter which will oe defined below; X(K) and L(«r) define the 

intersections of the hardening surface with the J, axis and the 

failure envelope f(J , /f~)  , respectively; and K   is the hardening 

parameter, which generally is a function of the history of plastic 
P volumetric strain. 
^ • For most soils, < Cftn be chosen as 

« ■ c xk (3.5) 

Equation 3.5 allows the elliptic hardening surface to expand and 

contract as well as to translate relative to the origin of the J,, /T, 

axes. Sot« that the hardening surface (Figure 3.5) was chosen so that 

the tangent at its intersection with the failure envelope is horizontal. 
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f 
This condition is guaranteed by the following relationships between K , 

L(K) , and xU) :* 

!1(K) if 1(K) >  0 

0 if *(*)<_ 0 
(3.6) 

s* 
*' £kk'Wtl"exp c-DxU)]} * VxU)]£ exp ^DixU)]      (3,7) 

X(K) » tU) ♦ R {A - C exp [-BI(K)]) (3.8) 

where D , D. , and W  are material constants, and W ic also a 

material constant which defines the maximum plastic volumetric compac- 

tion that the material can experience under hydrostatic loading (Figure 

3.1). The parameter R , in Equations 3.** and 3.8, is the ratio of the 

major to the minor axes of the elliptic yield surface (Figure 3.?). The 

value of R depends on the state of compaction of the material. For a 

contractive material (i.e., loose sand or normally consolidated clay, 

curves marked "2 •+ 3" in Figure 2.2), the value of R is greater than 

I/o where a ■ CO exp (-BJ.) is the slope of the failure envelope 

(Equation 3.3). For a dilative material (i.e., dense sand or overcon- 

solidated clay, turves marked "2 -* 5" in Figure 2.2), the value of R 

is less than I/o . R ■ i/o corresponds to the curves marked "2 •*■ I»" 

in Figure 2.2. These variations in the parameter R can be accounted 

for by the following functional relation: 

A O 

R - T—V( 1 ♦ R. exp [-R,L(.c)3> ♦ R exp <-R,[LU) - Rj )  (3.9) 
1 ♦ R.      1       «- ■* 

The mathematical form of Equation 3.7 depends on the specific mate- 
rial being modeled. The author believes, however, that the form 
presented by Equation 3*7 is suitable for modeling most soils. 
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where R. Rl> R„ , R, , and R  are material constants that 
i ' "1 » "2  • "3 * k  ' 

can be determined by a trial-and-error process of fitting the model to a 

variety of laboratory stress-strain data. 

3.3 SUMMARY 

In summary, there are five potential functions (two elastic and 

three plastic) that describe the complete behavior of the single-phase 

model. These functions are summarized in Table 3.1. In addition, 21 

material constants are used to characterize these functions in the 

present model. They too &ia summarized in Table 3.1. 

In the next chapter, it is shown how the present single-phase model 

can be adapted to simulate multiphase soil materials. 

21» 
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Figure 3.1 Proposed relationship for Isotropie compression test. 
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FIRST   INVARIANT   OP  STRESS  TENSOR  J, 

Figure 3.2 Elastic bulk modulus versus first invariant of the stress 
tensor. 
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Figure 3.3   Proposed relationship for triaxial shear test. 
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Figure 3.^ Elastic shear modulus versus second invariant of the stress 
deviation tensor and plastic volumetric strain. 
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Figure 3.5    Proposed yield surfaces for the elastic-plastic 
strain-hardening model. 
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CHAPTER 1* 

THE TREATMENT OF A MULTIPHASE SYSTEM 

The three-phase soil model is patterned on the concepts of effec- 

tive stress presented in Section 2.1 and is really quite simple. 

First of all, two single-phase models of the type developed in Chapter 3 

are required. One of these is used to characterize the effective stress 

response of the soil of interest, and the other is used to characterize 

the total stress response, as determined by appropriate laboratory 

tests. The only remaining step is to combine these two models. This 

is accomplished by imposing two constraints: (l) compatibility of 

total volumetric strain increments and (?) compatibility of individual 

effective and total deviatoric stress increments (dS!  - dS ). The 

first constraint leads to 

J' + u (k.l) 

where J* is the first invariant of the effective stress tensor; and 

the second leads to 

'U °ij * U6ij (U.2) 

which is Equation 2.2. The resulting model is thus able to predict 

deformations, total and effective stresses, and pore pressures for real 

three-phase media. The predicted pore pressures, however, are the 

overall pore pressures, u ; the model dees not distinguish between the 

pore air pressure P  and the pore water pressure P  discussed in 
1       * V 

Chapter 2.  Consequently, it is only a three-phase model in a "phenorae- 

nological" sense. Perhaps it should be thought of as a "pseudo" three- 

phase model. Be that as it may, the model does predict observed 

The pore air pressure Pa and the pore water pressure Pw could be 
calculated from Equation 2.1 if an appropriate laboratory test is 
conducted to determine the value of \ . 
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three-phase material response; and it does this quite well, as will be 

demonstrated in the next chapter. 

Technically speaking then, modeling the behavior of multiphase 

soil systems requires two separate sets of material constants, such as 

those shown in Table 3.1. The first set must reflect the effective 

stress properties of the soil (i.e., the properties of the soil skeleton 

alone) and must be determined by fitting test data obtained for the 

material under fully drained conditions. The second set must reflect 

the total stress properties of the soil (i.e., those of the skeleton- 

water-air mixture), which must be determined by fitting test data 

obtained for the material under completely undrained conditions. The 

resulting two sets of mod«l parameters are summarized in Table k.l.2 

Combining these two models through volumetric strain compatibility 

and effective and total deviatoric stress compatibility allows for 

calculation of the pore pressure and deformation response and the total 

and effective stress response of a Tiultiphase system subjected to given 

stress or strain increments. Either one of the following two procedures 

can be used for this purpose: 

1. If stress increments are given, 

a. Calculate the undrained volumetric strain using the 
second set of response functions and material con- 
stants listed in Table U.l, i.e., the undrained 
model parameters. 

b. Impose this volumetric strain on the drained 
model (i.e., the first set of response functions 
aw* material constants listed in Table J*.l) and 
calculate the resulting stress path and associated 
material response. This stress path is the effec- 
tive stress path that the material will experience 
during this undrained load application. The pore 
pressure is simply the difference between the total 
and the effective normal stresses. 

This procedure is illustrated in the following diagram: 

Kote that 1*2 material constant« are required to fully define the 
general model presented in Table «.1. Depending on the actual material, 
however, fever than 1»2 constants may be needed. 
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2. If strain increments are given (the usual case in code calcula- 
tions ), 

a. Calculate the effective stress using the first (drained) 
set of response functions and material constants listed 
in Table k.l. 

b. Calculate the total stresses using the second set of 
response functions and material constants listed in 
Table k.l.    The pore pressure during this undralned 
load application is simply the difference between the 
total and the effective normal stresses. 

The following diagram illustrates this procedure: 

USING MIXTURE PROPERTIES 
(TABLE l».l) AMD EQUATION A.30 

USING SKELETON PROPERTIES 
(TABLE k.l)  AND EQUATION A.W 

du« 
ij 

dO 
U 

The response of this multiphase material model subjected to 

undralned standard triaxial test conditions is examined in detail in the 

next chapter using the first of these procedures. This 

I 
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? 

exposition of the model will help the reader to appreciate both its 

relative simplicity and its power. 
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CHAPTER 5 

BEHAVIOR OF THE MULTIPHASE CONSTITUTIVE MODEL UNDER 
TRIAXIAL TEST CONDITIONS 

5.1 INTRODUCTION 

The ability of the new model to simulate the response of multiphase 

soil systems can be more clearly understood if the model is examined 

under familiar laboratory test boundary conditions. Since most of the 

mechanical testing of soils for engineering purposes is performed with 

the triaxial test (TX) apparatus, it is appropriate to investigate the 

model under both drained and undrained TX conditions. Adopting the z- 

axis of a cylindrical coordinate system (z, r, and 8) as the axis of sym- 

metry of the test sample* the total and effective stress tensors and the 

total strain tensor associated with this configuration become, 

respectively 

ij 

o 0 0 
z 

0 o_ 0 

0 0 o 

'U 

WU 

% 

0   c 

0 

0 

r 

0 

0 
r 

0   c 

(5.1) 

(5.2) 

(5.3) 

where c  and c  are the total vertical and radial strains, respec- 
*        IT 

tively. Equations 5.1 and 5.2 imply homogeneity of stress (o. ■ o ), 
v       r 

V 
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and Equation 5.3 implies homogeneity of deformation (total tangential 

strain e. ■ e ). The variables P' ■ J'/3 (effective mean normal or i     _ 
stress)» P ■ J.,/3 (total mean normal stress), Ji (the second invari- 

ant or the effective stress deviation tensor), J- (the second invari- 

ant of the total stress deviation tensor), and ekk/3 (mean volumetric 

strain) associated vith the above stress and strain tensors take the 

following forms 

JJ/3 

P ■ J,/3 ■ 1 

o« + 2a' % r 

o. + 2o 
i r 

(5.1») 

(5.5) 

J2 

(C - o')' 
_I L- z r_ 

I AV lkk e + 2e z r 
3 V 

(5.6) 

(5.7) 

where AV/V  is the volumetric strain. The TX test is generally con- o 
ducted in two phases: the hydrostatic phase and the shear phase. Both 

phases can be conducted either drained or undrained. They are discussed 

below. 

5.2 HYDROSTATIC PHASE 

5.2.1 Drained Condition 

During the drained hydrostatic phase of a TX test, the pore pres- 

sure is always zero, and the behavior of the soil skeleton alone (i.e., 

the effective stress behavior) is examined. The following conditions 

are obtained: 

o' * a* *  o' (5.8) 

£r-ee 
kk 
3 (5.9) 
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The relation between the Increment of the first invariant of effective 

stress and the elastic volumetric strain increment is given as (see 

Equation A. 13 and Set 1 of Table t».l) 

dJi * 3Ks dEKK 
(5.10) 

where the response function K  la given by Equation 3.1, Equation *.l 

is substituted into Equation 5»10» and the resulting expression is 

integrated to provide the i'ollowing relation between the elastic 
E 

volumetric strain e.. and J! 

1 - K 
fckk  3a\,K 

k tn 
s is 

exp (K,p Jj) - K1( 

1 - K Is 
(5.11) 

The relation between the plastic volumetric strain, r   aiul .1' is 

given by Equation 3.7» where K for this phase of the Lent In « 

and X(K) is   J? , thus: 
kk 

Ckk ' V1 " eRp (*Vi)J * WUU11) *xr ("ninJl)     (r,,U>) 

In view of EqurÜons 5.1! and 5» 12» the total volumetric strain take»» 

the following form 

H: 

1 - K 

kk  3K,, K, 
«?B is 
^ tn 

exp (K., JJ) - K, 
r?» .1      if 

1 - K Is 

CnlO 

♦ W ll - exp (-n JM| ♦ W. (,!•)* PXP (-n JJ) 
8 8 1       IS  1 lSl 

Equations 5.9 and 5.11 through 5.13 provide a complete specification for 

the deformation response of the soil skeleton subjected to A drained 

hydrostatic test (i.e., Isotropie consolidation). 
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The qualitative behavior of the model during a drained hydrostatic 

test is shown in Figure 5.1. The slope of the J| - e  curve during 

virgin loading can be obtained from Equation 5.13 with the help of 

Equations 5.12 and 3.1: 

dJj       3Ks       _ 

dc^ = 1 + KD1 + KD2 ~  3Ks (5.1M 

where 

KD1 

KD2 

3KsDs(Ws - W 

= 3KsWlsJ1[2 + Ji(Ds - Dl8>] exp (-D^) 

and K  and K  are, respectively, the elastic (Equation 3.1 and 
s      s 

Table U.l)  and the apparent bulk moduli of the soil skeleton under 

drained hydrostatic loading. The second and third terras in the denomi- 

nator of Equation $.lh produce a softening of the apparent bulk modulus 

due to plastic volumetric compaction. At high pressures, the softening 

term goes to zero, i.e., as e.. -+■ W  and exp (-D  J') -*• 0 , the 
^ KX    S X8  X 

apparent modulus K  approaches the elastic bulk modulus, K . 
s s 

Note that if a sample is first isotropically consolidated (from 

point 1 to point 2 in Figure 5.1), then unloaded (point 2 to point 3), 

and then reloaded (point 3 to point 2), the model dictates that the 

unloading-reloading behavior is purely elastic. 

5.2.2 Undrained Condition | 

During an undrained hydrostatic loading, the effective stresses and 

the pore pressure are generally not zero. The stress-strain relations 

for this drainage condition can be obtained in a manner similar to that 

used to derive Equations 5-11 through 5.13, except that these new 

expressions will involve the total stresses (Equations 5.5 and 5.6) 

instead of the effective stresses; i.e., the model coefficients will 

have the subscript m (mixture) instead of the subscript s (skeleton) 

(Table *».l); thus: 

f... 

1*0 

'Si 



1 - «im 
"kk ^^im 

In 
exp (K^) - Klm 

1 - fC lm 
(5.15) 

4 " Wm[l " exp (-Vl)] + W" exP (-DlmV (5.16) 

and 

1 - K 
lm 

2m im 
in •*» (K2mV - Klm 

im 
+ W [1 

m 
- exp (-D J.)] r   ml 

(5.17) 

♦W exp (-Vi' 

5.2.3 Computation of Effective 
Stress and Pore Pressure 

The effective stresses and the pore pressures generated during 

undrained hydrostatic loading tests (in which the applied total stresses 

are known) can be computed using the assumption that the volumetric 

strains from Equations 5.13 and 5.17 are equal (Procedure 1 of Chap- 

ter h); thus: 

1 - K Is 
3K,,K 

Js  is 
en 

eXp (K?8Ji) " Kls 
1 - K Is 

+ W [1 - exp (-D J.')] + W, (J.T exp (-1). J.')       ,_ .„» 
s sl     lsl        Is I       15.lo) 

1 - K 
lm 

3K,. K. 
?m im 

tn 
exp (K,VTL) - Klg 

1 - K lm 

+ Wm
[i-eXp(-DmJl)]+ VJir «P<-Di.Ji» 

1.1 
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Ji can be obtained as a function of J. using a bit of from which 

algebra. The effective stresses and the pore pressure u then become 

(see Equation 2.1*) 

Ji 
(5.19) 

u 
(J1 - Ji> (5.20) 

Note that when the material is fully saturated (i.e., a two-phase 

system) and the water is assumed to be incompressible, the right side of 

Equation 5.17 or 5.18 becomes zero (i.e., Jj is independent of J ), 

and Equation 5.18 can be satisfied if and only if J' is equal to zero. 

This means that all of the applied load is carried by the water. 

5.3 SHEAR PHASE 

During the shear phase of a conventional TX test, the cell pressure 

is held constant while the axial stress is changed; i.e., 

o ■ constant ■ P 
r c (5.21) 

and 

do (5.22) 

where P is the total confining pressure at the end of the hydrostatic 

compression phase. If the hydrostatic compression phase preceding shear 

was drained, the confining pressure P  is also the effective confining 

P' 
c pressure 

5.3.1 Drained Condition 

During a drained shear test, the effective and total stresses are 

equal (i.e., the effective stress path is known and is identical with 

the total stress path). 
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The response of the soil skeleton is modeled using Equation A.29 of 

Appendix A and the response functions and material parameters listed 

under Set 1 of Table k.l  (for the drained condition). Thus: 

de 
ij 

dJ1 

9Kg 
öij 

dS» 
+ r=M + dA 2G 

8 
S J  2/jT   3^ ijj 

(5.23) 

where 

de^ = component of the total strain increment tensor 

^"^ 

VJi » *^ » *8)    on the hardening surface 

f (J,1 > v») on the failure envelope s x    2 

Equation A.28 of Appendix A defines dA  using the material parameters 
s 

for the drained condition (Table k.l). 

In view of Equations A.13 and A.22 of Appendix A, the deviatoric 

components of the total strain increment tensor are 

dS! dXa  3rf 
de. ■ de.. + de  » —ü + §_ -   «i 

iJ   iJ   ij  2G   ~~^   ^=Sii (5.21») 

According to Equations A.22 and 3.3 or 3.U, the value of dA  can 
be written as a 

dA. 
2(vCf) 

(5.25) 

«»3 
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where 

PIP  P 
(Hg   «   -  toy    de^ second invariant of the plastic strain 

increment deviation tensor 

Substitution of Equation 5.25 intc Equation 5.2'+ leads to 

dS' « 2G 
ij    s 

de U 
(vff> fill 2s^J 

(5.26) 

For TX test conditions, Equation 5.26 can be written as 

d(o' - o') ■ 2G d(e - e ) - 2/3G (^dlT) zr    s  ?.   r      s   2s (5.27) 

and 

d(o» - o') 
z   r 

z       r 
2G 

-V30 (v^7) 
d{c - e ) 

z   r 
= 2G (5.28) 

where G  is the apparent shear modulus of the material under drained 

triaxial loading conditions. The second term on the right side of 

Equation 5.28 produces a softening of the apparent loading shear modulus 

due to plastic flow. 

Within the yield surface, the plastic strain increments are zero 

and the apparent shear modulus equals the elastic shear modulus G . 

The volumetric strain increment can be obtained by multiplying both 

sides of Equation 5.23 by the Kronecker delta, 6. , and then using 

Equation 5.25; thus: 

dekk-3ir + 6UdI (5.29) 

U 



Typical (qualitative) results predicted by the new model for two 

types of drained TX shear tests are shown in Figure 5.2. 

5.3.2 Undrained Conditions 

During an undrained shear test (following isotropic consolidation),* 

only the total stress path and, consequently, the total stresses are 

known for the skeleton-water-air mixture. The material response for 

this test can be modeled using the mixture model from Table 4.1, and 

equations similar to Equations 5.23 through 5.29 can be developed except 

that they will involve the total stresses (Equations 5.5 and 5.6) 

instead of the effective stresses. These model coefficients will have 

the subscript m (mixture) instead of the subscript s (skeleton). 

The resulting total strain increments are 

dJ.     dS.,      2(\/dif) 
, 1 x       ,  i.1 .  v  2 fa 
dGiJ " W 6iJ + 2G + "a? m       m     °m 

*<L 

K »* 
«., + 

m 
3Ji iJ M:K ij 

(5.30) 

and the deviatoric and volumetric strain increments are 

where 

m 

de 
ij      2G 

de 
kk 

F (J,   , VJo »    K )    on the hardening surface 
ml c. ra 

f (J.   ,  \Xj    on the failure envelope 
ml J 

(5.31) 

(5,32) 

The isotropic compression phase preceding shear could either be 
drained or undrained. In this example, however, it was chosen to 
be drained. 

*5 
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Equation A.28 of Appendix A defines dX , and consequently (vdT ) 

using the material parameters for the undrained condition (Table I4.I). 

Equation 5.31 can be written in a form similar to that of Equation 

5.28: 

d(o - a ) 
z   r 

d(e - eJ z   r 

2/3GVdi;.,m 

m   d(e - e )    m (5.33) 

If it is assumed that strain difference increments are the same under 

both drained and undrained conditions and hence that the effective 

stress paths for both conditions are identical, then Equations 5.28 and 

5.33 lead to 

-   1 •' d(e - t) o        z       r 

m 
1 ■ dfe - e J z   r 

(5.3*) 

Equation 5«3* dictates that the elastic moduli of the material under 

both drained and undrained shear test conditions will be the same if the 

material undergoes the same plastic flow under both conditions; i.e.. 

if 
2/s , then G ■ G 

s   m 

5.3.3 Effective Stress and Pore 
Pressure Computations 

During the undrained shear test, the effective stresses and the 

pore pressure at the end of each applied total stress loading increment 

can be computed through the assumption that the total volumetric strain 

increments obtained from Equations 5.29 and 5.32 are equal (i.e., 

Procedure 1_ of Chapter k).    This assumption entails the added assumption 

that the pore fluid has no effect on the shear behavior of the material. 

The strain compatibility constraint gives 

k6 



dJ. 

3K HW 5 
3K. 

+ 6 
m 

(5.35) 

from which J' can be obtained as a function of J- . The pore pres- 

sure and the effective stresses then become (see Equation 2.k) 

Jl 
- J« 

1 u * 
3 

a' « z 0 z - u 

a« « 
r a r - u 

(5.36) 

(5.37) 

(5.38) 

Typical (qualitative) results predicted by the new model for undrained 

TX shear tests are shown in Figure 5.3. Figure 5.3 also depicts quali- 

tatively the effects of the parameter R on the stress-strain and pore 

pressure responses during a conventional undrained shear test. 

When the material is fully saturated (i.e., a two-phase system) 

and the water is assumed to be incompressible, the right-hand side of 

Equation 5*35 becomes zero} i.e., J* is independent of J . This 

means that the effective stress path is independent of the total stress 

path applied to the material. This behavior is predicted by the model 

reported in Reference 15. 
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Figure 5.1 Behavior of th* aodei under drained hydrostatic 
compression (Isotropie consolidation). 
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Figure 5.2 Drained shear behavior predicted by the model 
for a conventional triaxial teat and a con- 
stant mean normal atreaa test. 
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CHAPTER 6 

COMPARISONS OP LABORATORY TEST DATA WITH MODEL PREDICTIONS 

6.1 EXPERIMENTAL PROGRAM 

The material used in the experimental program was Campbell Svamp 

sand. A typical gradation curve for »his sand is shown in Figure 6.1. 

The Campbell Svamp sand is classified as a tan uniform sand (SP) and 

consists of subrounded to subangular particles. The experimental 

program consisted of a total of 52 TX tests. Eighteen of these were 

conducted on 15 percent saturated specimens (designated as moist tests), 

twenty-three tests were conducted on 98 percent saturated specimens 

(designated as vet tests), and eleven tests vere conducted on 100 per- 

cent saturated specimens (designated as saturated tests). The degree of 

saturation in the moist and vet specimens vas achieved by mixing water 

and sand before building the specimens. The 100 percent saturation of 

the saturated specimens» however, vas achieved by back-pressure satura- 

tion (BPS) techniques. Based on their degree of saturation, the 52 test 

specimens vere naturally divided into three groups. 

The first group of specimens (moist) had an average dry density of 
3 3 

1.&3 g/cm and an average vet density of 1.1*9 g/cm . The folloving tests 

were conducted on this group: load/unload drained Isotropie compression 

(consolidation) tests, load/unload drained uniaxial strain tests, and 

load/unload consolidated-drained trlaxial shear tests. 

The second group of specimens (vet) had an average dry density of 

1.62 g/cm3 and an average vet density of 1.99 g/cm . This group vas 

tested as follows: load/unload drained and undrained Isotropie compres- 

sion tests, load/unload drained and undrained uniaxial strain tests, and 

load/unload consolidated-drained and consolidated-undrained trlaxial 

shear tests vlth pore pressure measurements taken on all the undrained 

tests. 

A table of factors for converting metric (SI) units of measurement to 
U. S. customary units and U. S. customary units to metric (SI) units 
is found on page 7. 



The third group of specimens (saturated) had an average dry density 

of 1.62 g/cm3 and an average wet density of 2.01 g/em. This group was 

tested as follows: load/unload drained Isotropie compression tests and 

load/unload consolidated-drained, consolidated-undrained, and 

unconsolidated-undrained triaxial shear tests, with pore pressure mea- 

surements taken on the undrained tests. 

The complete experimental program is summarized in the following 

tabulation: 

Group 1 
Experimental Program    (Moist) 

Group 2 
(Wet) 

Group 3 
(Saturated) 

Dry density, g/cm i.i»j 1.62 1.62 

Wet density, g/cm 1.1*9 1.09 2.01 

Degree of saturation, % 15.0 98.0 100.0 

Number of tests conducted 18 23 11 

'ic IC IC 

DUX UIC CDTX 

Type of tests conducted    4 
cirrx DUX 

UUX 

CDTX 

CUTX 

UUTX 

k 
euTX 

CDTX - Consolidated-drained triaxial shear test 
CUTX - Consolidated-undrained triaxial shear test 
DUX - Drained uniaxial strain test 
IC - Isotropie compression (consolidation) test; drained 

UIC - Undrained Isotropie compression teat 
UUTX - Unconsolidated-undrained triaxial shear test 
UUX - Undrained uniaxial strain teBt 

6.2 MATERIAL CONSTANTS 

As indicated in Chapter 1*, a maximum of !<2 material constants are 

associated with the proposed multiphase constitutive model (see Table 

l».l), which must be determined experimentally by fitting the model to 

laboratory test results. Twenty-one of the material constants are 
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associated with the drained behavior, and tventy-one are associated with 

the undrained behavior. The actual number of constants needed to 

simulate the behavior of a given material, however, depends on its 

degree of saturation. If the material is partially saturated (i.e., the 

wet group of Campbell Swamp sand tests), all ^2 constants are generally 

needed. If the material is fully saturated, fewer constants are needed. 

For example, for the Group 3 Campbell Swamp sand, only 2k material 

constants were needed (Tables 6.1 and 6.2); 21 of these are associated 

with the drained behavior (subscript s , Table k.l),  while 3 are asso- 

ciated with the undrained isotropic compression behavior (subscript m). 

Finally, if the material is nearly dry (i.e., the water content is negli- 

gible, such as occurs in the moist group of Campbell Swamp sand tests), 

the pore air pressures should be small; hence, only 21 material constants 

are needed. These are the material constants listed in Table k.l  with 

the subscript s . 

The numerical values of the material constants for the moist 

(Group l), the wet (Group 2), and the saturated (Group 3) Campbell Swamp 

sand tests are given in Table 6.1 for the drained behavior (subscript s) 

and Table 6.2 for the undrained behavior (subscript m). The deriva- 

tion of the numerical values of these constants is not discussed herein. 

The purpose of this chapter is simply to elucidate the capabilities of 

the new model. 

6.3 COMPARISON OF TEST RESULTS WITH MODEL BEHAVIOR 

Figures 6.2 through 6.k  compare actual test results with the model 

fits for the moist (Group l) material.  Figure 6.2 compares effective 

mean normal stress versus volumetric strain for the isotropic compres- 

sion test. Effective stress paths for uniaxial strain and the effec- 

tive failure envelope are compared in Figure 6.3. Figure 6.k  compares 

Because the initial degree of saturation of this group of tests was 
only 15 percent, no undrained tests were conducted on this material. 
However, it is anticipated that the undrained behavior of these tests 
could also be represented by Figures 6.2 through 6.J*. 
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consolidated drained triaxial shear test response for various confining 

pressure levels. 

Test results are compared with model behavior for the wet (Group 2) 

material in Figures 6.5 through 6.8. Figure 6.5 compares effective and 

total mean normal stress versus volumetric strain. Effective and total 

stress paths in drained and undrained states of uniaxial strain are com- 
p 

ared in Figure 6.6.      Figure 6.7 compares consolidated drained triaxial 

shear test response. The results of consolidated undrained triaxial 

shear tests are compared with the model's behavior in Figure 6.8. 

Figures 6.9 through 6.13 compare test results versus model behavior 

for the saturated (Group 3) material.  The comparison plots for iso- 

tropic consolidation are shown in Figure 6.9- Figure 6.10 compares con- 

solidated drained triaxial shear response. Figures 6.11 and 6.12 com- 

pare consolidated undrained triaxial shear response. Principal stress 

difference versus axial strain and pore pressure versus axial strain for 

unconsolidated undrained triaxial shear are compared in Figure 6.13. 

Figures 6.2 through 6.13 clearly show that the proposed constitu- 

tive model qualitatively simulates the various stress-strain and pore 

pressure responses of Campbell Swamp sand for the moist (Group l), the 

wet (Group 2), and the saturated (Group 3) conditions. It should be 

pointed out that pore pressure measurements are not needed for fitting 

the new model; they are useful, however, for verifying the resultant 

model fits. 

The drained and undrained tests conducted on the wet (Group 2) sand 
produced identical results; i.e., no pore pressures were measured in 
the undrained tests. It is anticipated that at stress levels above 
those employed in the current experimental program (20 bars) the wet 
sand would approach and eventually reach full saturation during 
undrained tests and consequently the undrained test results would 

. diverge from the drained test results. 
The bulk modulus of this material under undrained isotropic compression 
was assumed to be constant and equal to 1»5 kbars (see Table 6.2). 
This value was calculated from mixture theory; no undrained isotropic 
compression test was actually conducted on this particular material. 
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Table 6.1. Numerical values of material constants for 
drained behavior of Campbell Swamp sand. 

ä 

Material Constants 
Name 

Dry Density 

Notation, Units 

p , g/cm3 

Group 1 
(Moist) 

1.1*3 

Group 2    Group 3 
(Wet)   (Saturated) 

1.62 1.62 

Failure Envelope 
Parameter 

A , kbars 
s 

B , (kbars) 
s 

C , kbars 
s 

-1 

r 

Hardening Surface \ 
Parameters 

Bulk Modulus 
Parameters 

Shear Modulus 
Parameters 

Ais' " 

Rls« " 
R2s, (kbars) 

V " 
R. , (kbars) 
MS 

Rc  , kbars 

W , — 

-1 

-2 

D , (kbars) 
s 

W, , (kbars) 
la 

D, , (kbars) 
is 

K. , kbars 
is 

-1 

-2 

-1 

«1, 
K , (kbars) 
2s 

C  G. , kbars 1  is 

G2a, (kbars) 

G_ , kbars 

-1 

-1 

0.0023 

105.0 

3.1 

0.0 

0.0 

-1.0 

3000.0 

0.011 

0.305 

1.825 

55.0 

120.0 

0.1» 

0.92 

55.0 

0.2 

0.95 

200.0 

2.0 

200.0 

120.0001 0.288675 

0.0023 0.96 

120.0 0.288669 

3.1 3.1 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.0 0.0 

0.325 0.325 

0.23 0.23 

39.0 39.0 

130.0 130.0 

0.5 0.5 

0.75 0.75 

60.0 60.O 

0.31« 0.31» 

0.75 0.75 

21*0.0 2I4O.O 

1.0 1.0 

10.0 10.0 

% 
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Table 6.2. Numerical values of material constants for 
undrained behavior of Campbell Swamp sand. 

Material Constants 
Name 

Wet Density 

  Group 1 Group 2 
Notation. Units (Moist) (Wet) 

p , g/cm3      1.1*9 1.99 
m 

Group 3 
(Saturated) 

2.01 

Failure Envelope 
Parameters 

Hardening Surface < 
Parameters 

A , kbars 
m 
B , (kbars) 
m 

C , kbars 
m 

nim» " 

Rlm« " 
R2m' ^kbars' 

V "' 
R^ , (kbars] 

R_ , kbars 
5m 

W 

-1 

,-2 

m 
D , (kbars) 
m 

W, , (kbars 
lm 

-1 

-2 

^ D , (kbars)" lm 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

120.0001  0.288675a 

0.0023  0.96a 

120.0     0.288669a 

3.1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.016 

1.0 

30.0 

95.0 

NAb 

NAb 

NAb 

NAb 

NAb 

NAb 

NAb 

NAb 

NAb 

NAb 

\ 

Bulk Modulus 
Parameters 

K.   , kbars 
im 

Klm' " 
K0  ,  (kbars) 

<fm 
-1 

NA 

NA 

NA 

0.5 ^5.0 

0.99        0.0 

1.30 0.0 

Shear Modulus 
Parameters 

r G. , kbars 
im 

Glm« " 
G. , (kbars) 
2m 

G_ , kbars 
3m' 

-1 

NA 

NA 

NA 

NA 

NA 

60.0 

0.3*4 

0.75 

2I4O.O 

10.0 

0.3^ a 

0.75a 

2l40.0a 

1.0a 

10.0a 

The failure envelope parameters and the shear modulus parameters for 
this material are the same as those in Table 6.1. 
For this group the hardening surface was not utilized in the 
calculations. 
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US.  STANDARD   SIEVE  NUMBERS 

I        0.5 0.1 
GRAIN   SIZE , MILLIMETRES 

Figure 6.1    Campbell Swamp sand grain size distri- 
bution curve. 
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Figure 6.2 Drained isotropic compression response, laboratory measure- 
ments versus model behavior, Group 1. 
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CHAPTER 7 

APPLICATION OF THE MODEL FOR SOLVING GROUND SHOCK PROBLEMS 

7.1 INTRODUCTION 

The multiphase constitutive model described in Chapter h was 

incorporated into the LAYER code to provide an effective stress ground 

motion calculation capability for wet sites. To demonstrate this 

capability, the code was used to perform a 2D axlsymmetric calculation 

using the saturated material properties and model fits presented in 

Chapter 6. 

7.2 COMPUTATIONAL DETAILS 

The basic geometry for the calculation is shown schematically in 

Figure 7.1. The soil profile consisted of a half-space of the saturated 

(Group 3) material. As shown in Figure 7.1» the domain of the calcula- 

tion extended in the radial direction for a distance of 1»1.8 metres from 

ground zero (GZ) and vertically to a depth of 1*1.8 metres; i.e., the 

region of the calculation was square. A 0.1<-metre-square, finite- 

difference grid size and a time step of 0.15 ms were used to carry the 

2D finite-difference calculation to a real time of 18 ms. 

The far right and bottom boundary conditions were of the transmit- 

ting type (Reference 20). The left boundary was, of course, treated as 

an axisymmetric boundary; i.e., the radial velocity and the shear strain 

(or stress) were both required to vanish. The surface boundary was 

subjected to a radially expanding airblatt loading, starting at GZ at 

zero time (Figure 7.2). The airblast shock velocity VS was constant 

and equal to 3 metres per millisecond. The peak overpressure P 

was also constant and equal to 100 bars. A constant rise time t  and 
r 

a constant positive phase duration d of 3 ms and 9 ms, respectively, 

were used to characterize the shape of the airslap pulse. 

The far right and bottom transmitting boundary conditions were 

applied at velocity points while the left and surface boundary condi- 

tions were applied at stress points. 
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7.3   RESULTS 

In this section, selected code stress- and motion-time histories 

and stress path plots are presented at two intermediate ground ranges: 

R ■ 3.6 metres and 15.6 metres. These ranges pertain to the stress 

output; for motion, the corresponding ranges are R ■ 3.8 metres and 

15.8 metres. The depths are 1.6, 3.6, and 7.6 metres for stresses and 

1.8, 3.8, and 7.8 metres for motions. 

Figures 7.3 through 7.5 present total vertical stress, total radial 

stress, total mean normal stress, second invariant of the stress devia- 

tion tensor, pore pressure, and effective mean normal stress for the 

3.6-metre range and the 1.6-, 3.6-, and 7.6-metre depths. Figures 7.6 

through 7.8 show the corresponding plots for the 15.6-metre range. It 

is clear from these figures that the effective stresses are very small 

in comparison with the total stresses and that most of the stress is 

carried by the pore fluid. This was expected because the material is 

fully saturated. 

Figures 7«9 and 7.10 present the vertical and radial particle 

velocity and displacement wave forms, respectively, for the 3.8-metre 

range at the 1.8-, 3.8-, and 7.8-metre depths. Corresponding motion 

wave forms for the 15.8-metre range are shown in Figures 7.11 and 7.12. 

The radial velocities and displacements are smaller than the vertical 

motions because the problem is superseismic. 

Stress path plots for the 3.6-metre range and 1.6-, 3.6-, and 7.6- 

metre depths are presented in Figure 7.13. Figure J.lU  depicts the 

corresponding plots for the 15.6-metre range. 

I 
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CHAPTER 8 

SUMMARY AND RECOMMENDATIONS 

.SW.T.TV^-a^fijÜiiM: ■- 

8.1 SUMMARY 

A three-dimensional, elastic-plastic, work-hardening constitutive 

model for simulating isotropic three-phase earth materials has been 

developed. Within the elastic range the model contains tvo response 

functions: a nonlinear elastic bulk modulus and a nonlinear elastic 

shear modulus. In the plastic range it contains three potential func- 

tions: a failure envelope, a hardening yield surface, and a hardening 

function. The numerical values of the coefficients in these response 

and potential functions can be determined experimentally using essen- 

tially conventional soil testing techniques. The major feature of the 

new constitutive model is its capability of simulating the total and 

effective stress-stain and pore pressure responses of saturated and 

partially saturated soils. 

The behavior of the model under drained and undrained triaxial test 

conditions has been examined, and the method for calculating the effec- 

tive and total stresses and the pore pressure of a deforming multiphase 

soil subjected to given total stress or strain paths has been explained. 

The new yodel has been fit to a set of drained and undrained 

mechanical property test data for moist, wet, and saturated Campbell 

Swamp sand; and the saturated sand model has be*n used in a demonstra- 

tion LAYER code calculation to show its potential for performing effec- 

tive stress ground shock analyses. The demonstration calculation was 

precisely what its name implied, a demonstration. The problem that was 

solved was trivial} the effort to solve it, however, was not. 

8.2 RECOMMENDATIONS 

It is recommended that the new model be verified through calcula- 

tions against a wide variety of field events executed at wet sites. 

These efforts should also include calculations with current single-phase 

(total stress) constitutive models so that the benefits of effective 

stress ground shock analyses can be assessed. 
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APPENDIX A 

FUNDAMENTAL BASIS OF ELASTIC-PLASTIC CONSTITUTIVE MODELS 

A.l BASIC CONCEPTS FROM CONTINUUM MECHANICS 

From a microscopic point of viewj physical bodies are composed of 

discrete molecules interconnected by internal forces of mutual 

attraction and repulsion. The concept of stress vithin a body requires 

that boundary distances and/or loaded area be large in comparison with 

distances between molecules and/or the size of the individual molecule. 

This, in effect, transforms a body composed of discrete molecules into a 

statistically macroscopic equivalent amenable to mathematical analysis. 

Since most engineering problems deal with macroscopic phenomena and 

involve very large boundary distances and loaded areas compared with 

individual molecules, it appears reasonable and convenient to invoke the 

mechanics of continua as the basis for analytical consideration of these 

problems. 

The theory of continuous media is built upon two strong founda- 

tions: basic balance, and conservation laws and a constitutive theory. 

The basic balance and conservative lavs of any continuum are 

1. Conservation of mass 

2. Conservation of energy 

3. Balance of linear momentum 

b. Balance of angular momentum 

5. Inadmissibility of decreasing entropy 

When thermal effects are neglected and symmetry of the stress tensor is 

assumed, these basic axioms of continuum mechanics lead to the 

following continuity equation:1 

&+(>V,i (A.l) 

Indices take on a value of 1, 2, or 3. A repeated index is to be summed 
over its range. A comma between subscripts represents a derivative. 
Quantities are referred to rectangular Cartesian coordinates X. . 
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and the equations of motion: 

°iJ,J+Fi-paiS° (A.2) 

where 

p = mass density 

t = time 

v. = components of velocity vector 

a.. = a.. * symmetrical stress tensor 

F. = components of body force 

a. = components of acceleration vector 

Equations A.l and A.2 are called field equations. They constitute 

four equations that involve ten unknown functions of time and space. 

Therefore, the system resulting from Equations A.l and A.2 is indetermi- 

nate. These unknown functions are the mass density p , the three 

velocity components v. , and the six independent stress components 

o.. . The body force components f. are known quantities, and the 

acceleration components a. are expressible in terms of the velocity 

components v 
i ' 

To overcome the indeterminacy and make the system 

complete, six additional expressions relating the ten unknown variables 

are required. In continuum mechanics such relations are stated by 

constitutive equations (or material models), which relate stresses to 

deformation and history of deformation. The difference between consti- 

tutive equations and field equations (Equations A.l and A.2) is that the 

latter contains both space coordinates and time and is applicable to all 

materials, whereas the former is independent of space coordinates (for 

homogeneous materials) and represents the intrinsic response of a 

particular material or class of materials and, as such, is a mathemati- 

cal idealization of the mechanical behavior of real materials. 

The general form of a constitutive equation may be expressed by the 

following functional form: 
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VD«n • °qp • er» • V ' p) - ° (A-3) 

where cr.. is the components of stress tensor and the deformation-rate 

tensor D and the spin tensor fi are related to the components of 

the velocity vector, v. , by 
j 

f D  » ^ (v   + v  ) I mn  2  m,n   n,m 

I and (A. It) 

I a    - ~ (v  - v ) I qP  2  q,p   p,q' 

I and the infinitesimal strain tensor e   is related to the components f rs 
of the displacement vector u. by 

I rs  2  r,s   str 
i 

i 
4 Equations A.l through A.3 constitute ten equations involving ten unknown 
9 

|        variables. These equations will lead, in conjunction with the kinematic 
I 

relations given by Equations A.l» and A.5 and the appropriate boundary 

{ conditions, to a complete description for the solution of a boundary- 

f value problem. 

In general, materials having the same mass and geometry respond 

i differently when subjected to identical external effects. Therefore, a 
I 
» variety of constitutive theories have emerged, each of which describes a 

I limited number of physical phenomena decided on at the outset for a 

I given material. In the following sections the constitutive theory for 

I        an elastic-plastic Isotropie material is presented. 

A.2 GENERAL DESCRIPTION OP ELASTIC-PLASTIC 
CONSTITUTIVE MODELS 

The basic premise of elastic-plastic constitutive models is the 

assumption that certain materials are capable of undergoing small 

plastic (permanent) as well as elastic (recoverable) strains at each 
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loading incrtaent. Mathematically, the total strain increment is 

assumed to be the sum of the elastic and plastic strain increments; 

i.e., 

where 

de 

de 

de 

ij 

E 

P 
i.1 

d6iJ " d6fj + deL 

components of the total strain increment tensor 

components of the elastic strain increment tensor 

components of the plastic strain increment tensor 

(A.6) 

Within the elastic range, the behavior of the material c«tn be 

described by an elastic constitutive relation of the type 

dcfj " CiJkl(omn) dokl (A.T) 

where 

Ciikl * mftteri&1 response function 

do. . * components of stress increment tensor 

The behavior of the material in the plastic range can be described with- 

in the fraaework of the generalized incremental theory of plasticity. 

The mathematical basis of the theory was established by Drucker (Refer- 

ence 21), who introduced the concept of material stability, which has 

the following implications: 

1. Yield surface (leading function) should be convex in stress 
space. 

2. Yield surface and plastic potential should coincide (which 
results in an "associated" flow rule). 

References cited in this appendix are included in the References 
at the end of the main text. 

9* 



mm mmitmmmmsmtitmM'miQm .mmmmiimmmmm 

3. Work "softening" should not occur. 

These three conditions can be summarized mathematically by the following 

inequality 

d0ij deIj ^ ° (A.8) 

These conditions allow considerable flexibility in the choice of the 

form of the loading function, i  , for the model, which serves as both 

a yield surface and the plastic potential. In general, the yield 

surface may be expressed as 

i  (oi1 , K)  - 0 (A.9) 

and for isotropic materials the yield surface may be expressed, for 

example, as 

(A.10) 

where 

J, ■ o  ■ first invariant of the stress tensor l   nn 

Jg ■ g S.. S. - second invariant of the stress deviation tensor 

S.. ■ o.. - (J,/3) 6., ■ stress deviation tensor 

6.. ■ Kronecker delta ■ 
(1   i - J 

(0    i *  J 

< ■ a hardening parameter 

The hardening parameter, K , generally can be taken to be a function of 
P 

the plastic strain tensor, e.. . The yield surface of Equation A.9 or 

A.10 may expand or contract as K increases or decreases, respectively 

(Figure A.l). 
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Condition! 1 through 3 «bow, taken ii* conjunction with Equation 

A.9 or A. 10, result in the following plastic flow rule for isotropic 

materials: 

dc 
a°iJ 

tj 

if 

if  i<  0 
(A.11) 

where dX is a positiv« scalar factor of proportionality, which is non- 

t«ro only when plastic deformations occur and is dependant on the 

particular form of the loading function. 

A.2.1 Elastic Strain Increment Tensor 

For isotropic elastic materials, the strain increment tensor 

(Equation A.7) takes the following form 

K  
dJi     1 

aciJ  QK °i.1  20 aöiJ 
(A.12) 

where 

K ■ elastic bulk modulus 

0 ■ elastic shear modulus 

The bulk and shear moduli can be functions of the invariants of the 

stress tensor. Accordingly, it is assumed that K ■ K(J. , J„ , J_) 

and 0 ■ Q(J. , J2 , Jj where J_ is the third invariant of the 

stress deviation tensor. Equation A.12 can be written in terms of the 

hydrostatic and deviatoric components of the strain and stress increment 

tensors; i.e., 

*»■ 
dJ. 

Ä(J1 ' ^2 • 73* l 

de dS, 
n »Wi.^.y,) 1J 

(A.13) 
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where 

def*. ■ increment of elastic volumetric strain 

de?. * elastic strain deviation increment tensor 

In order not to generate energy or hysteresis within the elastic ranpe, 

the elastic behavior of the model must be path independent. The mate- 

rial should then possess a positive definite elastic internal energy 

function V which is independent of stress path. The strain energy 

function can be written as 

?-SiJou"ij 

*J (S     ♦ — J    6    ) I - 6      + ^ I 

0   9K(JX , J2 , J3) 

SiJ dj, + rJ 

0      2G(J1 , J2 , J3) 

d(J1)< dJ, 
♦ r 

0    loK^  , J2 , J3)      0    2G(JX , J2 , J3) 
(A.lM 

In order for W to be independent of stress path, the integrals in 

Equation A.lb have to depend only on the current values of J. and 

J2 . Therefore, the bulk and shear moduli have«to be expressed as 

I 

K - K(J2) 

0 - O(J2) 
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Further, K and G must always be positive. Since during elastic 

deformation the hardening parameter (K) in constant, the bulk and 

shear moduli can also be expressed as 

K - K(J2 , K) 

G - G(J2 , K) 

(A.16) 

A.2.2 Plastic Strain Increment Tensor 

The plastic strain increment tensor is given by Equation A.11 where 

the loading function 4 is given by Equation A.9 or A.10. The harden- 

ing parameter in Equation A.9 or A.10 could be taken as being equal to 
p 

the plastic volumetric strain c. ; thus 

P 
Kackk (A.17) 

The use of Equation A.17 will allow the yield surface to expand as well 

as to contract (Figure A.l). The plastic loading criteria for the func- 

tion i   are given as 

%*» 

> 0 for loading 

0 for neutral loading 

< 0 for unloading 

(A.18) 

I 

Because de.. ■ 0 during unloading or neutral loading, as well as for 

$< 0 , Equations A.12 and/or A.13 are used to determine the purely 

elastic strain changes. The prescription that neutral loading produces 

no plastic strain is called the continuity condition. Its satisfaction 

leads to coincidence of the elastic and elastic constitutive laws during 

neutral loading (References 21 and 22). 

Like the elastic behavior, the plastic stress-strain relation can 

be expressed in terms of the hydrostatic and deviatoric components of 
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strain.    Applying the chain rule of differentiation to the right-hand 
side of Equation A.11 yields 

3J. 3/T 

or 

3        '">N    t^tou 

Multiplying both sides of Equation A.19 by 6 
U gives 

de  ■ ^ dl ^° 

(A.19) 

(A.20) 

The deviatoric component of the plastic strain increment tensor deP 

can be written as ij 

"'a' -L - 5 <«,, (A.21) 

Substitution of Equations A.19 and A.20 into Equation A. 
21 yields 

de U 
'   2 

(A.22) 

In order to use Equation A.19 or Equations A.20 and A.22, the 

proportionality factor dA oust be determined. This can be accom- 

plished in the following manner. Prom Equations A.10 and A.17 the total 
derivative of i   becomes 

df - !^- <u, + -1 iL s     as     * _?i_ * P 
(A.23) 

WiiiiJnifW»^&»'^" >■■ , 
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In view of Equations A.13 and A.20, Equation A.23 becomes 

G de 
E 

3K -i!4--e1-ALBJa*3dAi«-2i--0 kk 3J i   rt  >f2 -" ^ »4 
(A.2U) 

Substituting Equation A.6 into Equation k.2h  results in 

■*■    'Jo "»Jo 
3J   P 

13ckk 

or 

S,, de, 

"" "•   «»C ~iJ ~1J 
'2  °2 2  °2 

- 3 dX 
3J, . P 
13ckk 

(A.26) 

P        P 
Substituting the values of dej.  and de   from Equations A.20 and 

A.22, respectively, into Equation A.26 yields 

■^V^^ 9K dX (|4-)2 ♦ G dX (-&.) 3J 
3^" 

- 3 dX 8J1 »£ kk 

(A.27) 

Solving for dX gives 
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3K f*- de. w ♦ JL -Ü_ s de 

9K 

K/    V^j    3Ji^; 
p 
kk 

(A.28) 

A.2.3 Total Strain Increment Teaser 

The total strain increment tensor can be obtained by combining 
Equations A.6, A.12, A.19» and A.28: 

I 

dJ      dS 

iJ  9K °ij * 2G 

x|i-d. ♦ -Ä--2L 

*- J2 1 /li- 
la j. 

(A.29) 

t-te/--^-*--*- 
13ckk* 

i iJ *5f a^ **) 

Similarly, the stress Increment tensor can be written as 

^i 1 * K dcvu **. +20 de iJ kk "ij 'iJ 

Ä If dckk + "=: -*fc sM de 1  **  >^8^ an  mn 

l^:.(; 

(A.30) 

3K 1       '^V 

Equation A.29 or Equation A.30 is the general constitutive equation 

for an elastic-plastic Isotropie material. To use either of these 

equations it is necessary only to specify the functional forms of K , 

G , and i   and, of course, to determine experimentally the numerical 
values of the coefficients in these functions. 
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Figure A.l    Typical yield surface for an elastle-plasti« 
strain-hardening model. 
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APPENDIX B: NOTATION 

I 
I' 

A, B, and C 

Cijkl 

d 

dX 

D, Dj 

D 
an 

•u 
p 

•u 
f 

I 

G. 

Cij, Gj, G^, G^ 

3 

K 

Components of acceleration vector 

Material constant«; appear In the equation of the 
failure envelope 

Elastic compliances of the material 

Phase duration; appears in application of the model 

Positive scalar factor of proportionality; appears 
in the flow rule 

Material constants; appear in the hardening function 

Deformation-rate tensor 

Strain deviation tensor 

Elastic strain deviation tensor 

Plastic strain deviation tensor 

Failure envelope 

Loading function 

Strain-hardening elliptic cap 

Components of body force 

Elastic shear modulus 

Initial elastic shear modulus 

Material constants in shear modulus formulation 

Second invariant of the plastic strain deviation 
tensor 

First invariant of the «tress tensor 

First Invariant of the effective stress tensor 

Second Invariant of the effective or total stress 
deviation tensor, respectively 

Third Invariant of the str-fs deviation tensor 

Elastic bulk modulus 

Initial elastic bulk modulus 

\ 

r-T ** 
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L(K) 

P 

P« 

P 

P' 
c 

V 

r.6,1 

R 

RD 

"l* 2* "3* ^1» 

t 

u 

U 

V 

VD 

VÖ 

W 

Material constanta in bulk modulus formulation 

Intersection of the hardening surface vith the 

failure envelope f(J »^>) 

Subscript used to indicate "mixture" 

Total mean normal stress 

Effective mean noraal stress 

Pore air pressure 

Total confining pressure at the end of the 
hydrostatic compression phase of a triaxial test 

Effective confining pressure at the end of the 
hydrostatic compression phase of a triaxial test 

Pore water pressure 

Cylindrical coordinate system 

Ratio of the major to minor axes of the elliptic 
hardening surface; ground rang« 

Radial displacement 

Material constants in hardening surface formulation 

Subscript used to indicate "skeleton" 

Stress deviation tensor 

Time 

Rise time 

Total pore presau-e repre« nting the combined effect 
of the pore air pressure at<d the pore water pressure 

Displacement vector 

Components of the velocity vector 

Radial particle velocity 

Vertical particle velocity 

Vertical displacement 

Airblast shock velocity 

Maximimi plastic volumetric compression that the 
material can experience under hydrostatic loading 

Elastic internal energy function 
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xU) 

AV/V 
o 

£ij 
E 

CU 

Ckk 

E 

F 

P 

c_ 

K 

•; 

•; 

Material constant 

Cartesian coordinate system 

Intersection of the hardening surface with the 
JL axis 

Kronecker delta 

Volumetric strain 

Total strain tensor 

Elastic strain tensor 

Total volumetric strain 

Elastic volumetric strain 

Plastic strain ensor 

Plastic volumetric strain 

Total radial strain 

Total vertical strain 

Total tangential strain 

Mass density 

Total stress tensor 

Effective stress ter.sor 

Total radial stress 

Hardening parameter 

Effective radial stress 

Total axial stress 

Effective axial stress 

Total tangential stress 

Effective tangential stress 
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*u 
Diaenaionies« quantity proportional to the pore 
volume occupied by the water phaae 
Spin tensor 

.—> - 

106 



MPHPCSS 

DISTRIBUTION LIST 

Address 
No. of 
Copies 

DOD 

Director 
Defense Advanced Reasearch Project Agency 
1400 Wilson Blvd 
Arlington, Va. 22209 
ATTN: Technical Information Office 

Director 
Defense Civil Preparedness Agency 
Washington, D. C. 20301 
ATTN: Hazard Evaluation and Vul Red Div, G. Sisson 

Defense Documentation Center 
Caaeron Station 
Alexandria, Va. 22314 
ATTN: DD 12 

Director 
Defense Intelligence Agency 
Washington, D. C. 20301 
ATTN: Technical Library 

Director 
Defense Nuclear Agency 
Washington, D. C. 20305 
ATTN: TITL 

DDST 
SPSS 

4 
1 
5 

Under Secretary of Defense for Research and Engineering 
Departaent of Defense 
Washington, D. C. 20301 
ATTN: Strategic and Space Systeas (OS) 

107 



*?sEwmg. 

Address 
No. of 
Copies 

DEPARTMENT OF THE ARMY 

Director 
ttfl) Advanced Technology Center 
Department of the Army 
P. 0. Box 1500, Huntsville, Ala. 
ATTN: ATC-T 

Chief of Engineers 
Department of the Army 

35807 

Washington, D. C. 
ATTN: DAEN-MPE-T 

DAEN-RDM 
DAEN-RDL 
DAEN-ASI-L 

20314 
(D. Reynolds) 

Commander 
Harry Diamond Laboratories 
Department of the Army 
2800 Pwder Mill Road 
Adelphi, Md. 20783 
ATTN: DELHD-I-TL (Tech Lib) 

Director 
U. S. Army Ballistic Research Laboratories 
Aberdeen Proving Ground, Md. 21005 
ATTN: DRDAR-TSB-S (Tech Lib) 

Commander 
U. S. Army Engineer Center 
Fort Belvoir, Va. 22060 
ATTN: DT-LRC 

Division Engineer 
U. S. Army Engineer Division, Huntsville 
P. 0. Box 1600, West Station 
Huntsville, Ala. 35807 
ATTN: HNDED-SR 

108 

L, rt« 
«5*^-.-.,-«£. j^&jUfc!, 



ppawgfjfjMupjiijfpp^ 

Address 
No. of 
Copies 

DEPARTMENT OF THE ARMY (Continued) 

Division Engineer 
U. S. Army Engineer Division, Ohio River 
P. 0. Box 1159 
Cincinnati, Ohio 45201 
ATTN:  ORDAS-L (Tech Lib) 

Division Engineer 
U. S. Army Engineer Division, Missouri River 
P. 0. Box 103, Downtown Station 
Omaha, Nebr.  68101 
ATTN: Library 

Commander 
U. S. Army Material & Mechanics Research Center 
Watertown, Mass.  02172 
ATTN: Technical Library 

Commander 
U. S. Army Materiel Development and Readiness Command 
5001 Eisenhower Avenue 
Alexandria, Va.  22333 
ATTN: DRXAM-TL (Tech Lib) 

Commander 
U. S. Army Nuclear & Chemical Agency 
7500 Backlick Road 
Building 2073 
Springfield, Va.  22150 
ATTN:  Library 

Commander/Di rector 
U. S. Army Cold Regions Research and Engineering Laboratory 
P. 0. Box 282 
Hanover, N. H. 03755 
ATTN:  Library 

Directo«- 
U. S. Army Construction Engineering Research Laboratory 
P. 0. Box 4005 
Champaign, 111. 61820 
ATTN:  Library 

109 

ks. 



jpppusijpp^ ^£^^^S^'^l^?F7!«i;?.^ 

Address 

DEPARTMENT OF THE NAVY 

Offlcer-in-Charge 
Naval Construction Battalion Center 
Civil Engineering Laboratory 
Port Hueneae, Calif. 93041 
ATTN: Code L08A (Library) 

Code LSI (J. Ferrito) 
Code LSI (J. Crawford) 

Coaaander 
Naval Facilities Engineering Coaaand 
Washington, 0. C. 20390 
ATTN: Code 09M22C (Tech Lib) 

Superintendent 
Naval Postgraduate School 
Monterey, Calif. 93940 
ATTN: Code 0142 (Library) 

Officer-in-Ch»rge 
Naval Surface Weapons Center 
White Oak Laboratory 
Silver Spring, Md. 20910 
ATTN: Technical Library 

CoMunder 
Naval Surface Weapons Center 
Dahlgren, Va. 22448 
ATTN: Technical Library & Information Services Branch 

Office of Naval Research 
Arlington, Va. 22217 
ATTN: Code 7IS (Tech Lib) 

No. of 
Copies 

DEPARTMENT OF THE AIR FORCE 

Air Force Institute of Technology 
Air University 
Wright-Patterson AFB, Ohio 45433 
ATTN: Library 

110 



mgsfm^gm^mm^mmms^msmmm^' f^vm mvwmmmm>. -mm w*^wi«w " 

Address 

DEPARTMENT OF THE AIR FORCE  (Continued) 

AFSC Air Force Weapons Laboratory, 
Kirtland AFB, N. Hex 87117 
ATTN: DE N. Plaaondon 

DES R. Jolley 
DES J. Thoaas 
SUL 

Deputy Chief of Staff 
Research, Developaent, & acq. 
Department of the Air Force 
Washington, D. C. 20330 
ATTN: AFRDQSH 

Space & Missile Systems Organization/MN 
Air Force Systeas Cosnand 
Norton AFB, Calif. 92409 
ATTN: MNNXH (D. Gage) 

MNNXN (M. Del Vecchio) 

Vela SeissK>logical Center 
312 Montgoaery Street 
Alexandria, Va. 22314 
ATTN: G. Ullrich 

DEPARTMENT OF ENERGY 

Nuclear Regulatory Coaaiasion 
Directorate of Licensing Regulations 
Washington, D. C. 2054S 
ATTN: Site Analysis Br (L. Heller) 

Lawrence Liveraore Laboratory 
P. 0. Box 808 
Liveraore, Calif. 94S50 

ATTN: Technical Inforaation Dept., Library 

Oak Ridge National Laboratory 
Nuclear Division 
X-10 Lab Records Division 
P. 0. Box X, Oak Ridge, Tenn. 37830 
ATTN: Central Research Library 

111 

Jk 



m mmmommmmmmmmm 
^W^W^^^^m ^W' ^ 

Address 
No.  of 
CopicB 

DEPARTMENT OF ENERGY (Continued) 

Sandia Laboratories 
P. 0. Box 5800 
Albuquerque, N. Hex. 
ATTN: Div 5531 (W. 

Div 5532 (J. 
Div 5621 (M. 
Div 5533 (A. 

87115 
Brown) 
Lipkin) 
Hightower) 
Chabai) 

DEPARTMENT OF DEFENSE CONTRACTORS 

Aerospace Corp. 
P. 0. Box 92957 
Us Angeles, Calif. 9009 
ATTN: Technical Information *"« r »ices 

Agbabian Associates 
250 N. Nash Street 
El Segundo, Calif. 90245 
ATTN: M. Agbabian 

Applied Theory, Inc. 
1010 Westwood Blvd 
Los Angeles, Calif. 90026 
ATTN: J. Trulio 

Boeing Co. 
P. 0. Box 3707 
Seattle, Wash. 98124 
ATTN: Aerospace Library 

California Research & Technology, Inc. 
6269 Variel Avenue 
Woodland Hills. Calif. 91364 
ATTN: Library 

S. Shuster 
K. Kreyenhagen 

California Research & Technology, Inc. 
4049 First Street 
Liveraore, Calif.    94550 
ATTN:    D. Orphal 

112 

jgasaaaa^ 
aggfes&iaaaääMK^feJteafesMB 



wmm ^pwspp ^??PPipPfliliPiP^PPPPBIIB^WP?^P!W! WBWfPBpiWWPISBPHlWJffll 

Address 
No. of 
Copies 

DEPARTMENT OF DEFENSE CONTRACTORS (Continued) 

Civil Systems, Inc. 
RFD 1 
South Royalton, Vt. 
ATTN: S. Blouin 

05068 

Civil Systems, Inc. 
P. 0. Box 2083 
Midland, Tex. 79702 
AHN: S. Melzer 

Civil Svstems, Inc. 
2201 San Pedro, NE 
Albuquerque, N. Mex. 
ATTN: J. Bratton 

87110 

Eric H. Wang 
Civil Engineering Research Facility 
University of New Mexico 
University Station 
P. 0. Box 25 
Albuquerque, N. Mex. 87131 
ATTN: J. Shinn 

J. Kovarna 
P. Lodde 

1 

Fugro National, Inc. 
P. 0. Box 17145 
Long Beach, Calif. 90807 
ATTN: D. Anderson 

General Electric Co.-Tempo 
816 State Street (P. 0. Drawer QQ) 
Santa Barbara, Calif. 93102 
ATTN: DASIAC 

IIT Research Institute 
10 W. 35th Street 
Chicago, 111. 60616 
ATTN: Documents Library 

113 

**»- ■v'^M^i^^ih 

v*ii8JB ; 
> ~:^-.*«agN>. 1-iHMJIJfc.amMgt, 



m^ffmmiwmmmmmmiimm mm'mmmvmw!8ß!^m.mw0mmymmßmm. 

Addreis 

DEPARTMENT OF DEFENSE gngtRACTORg (Continued) 

University of Illinois 
Consulting Services 
B106A Civil Engineering Bldg. 
Urban«, 111. 61801 
ATTN: N. Neweark 

J. H. Wiggins Co., Inc. 
16S0 S. Pacific Coast Highway 
Redondo Beach, Calif. 90277 
ATTN: J. Collins 

Herritt Cases, Inc. 
P. 0. Box 1206 
Redlands, Calif. 92373 
ATTN; Library 

Physics International Co. 
2700 Merced Street 
San Leandro, Calif. 94577 
ATTN: Technical Library 

J. ThoBsen 

Pacifica Technology 
P. 0. Box 148 
Del Mar, Calif. 92014 
ATTN: Technical Library 

R&D Associates 
P. 0. Box 9695 
Marina Del Rey, Calif. 90291 
ATTN: R. Port 

Technical Information Center 

R&D Associates 
1401 Wilson Blvd., Suite 500 
Arlington, Va. 22209 
ATTN: N. Cooper 

Science Applications, Inc. 
P. 0. Box 2351 
La Jolla, Calif. 92038 
ATTN: Technical Library 

No. of 
Copies 

1 

I 

114 



mmm uwvmm&y ji-iy .f«sij|si»'^u*w^^*jM ia^p^pgj^p^pp^ipti|9i WPfü£ 

^*mimm#*v**<w*ii&m'**> ■*** ■. ■?rmmw*****«®m!im,wwmmmiteik% MWWWMP^ftMl'W^WJM# 

Address 

DEPARTMENT OF DEFENSE CONTRACTORS (Continued) 

SRI International 
333 Ravenswood Ave. 
Henlo Park, Calif. 94025 
ATTN: Y. Gupta 

Technical Library 

Systems, Science & Software, Inc. 
P. 0. Box 1620 
La Jolla, Calif. 92038 
ATTN: Library 

Terra Tek Inc. 
420 Wakara Way 
Salt Lake City, Utah 
ATTN:  Library 

A. Abou~sayed 

84108 

TRW Defense & Space Syateas Group 
One Space Park 
Redondo Beach, Calif.  90278 
ATTN: Technical Information Center 

N. Lipner 

Weidlinger Assoc, Consulting Engineers 
110 E. 59th Street 
New York, N. Y.  10022 
ATTN: H. Baron 

I. Sandier 

Weidlinger Assoc, Consulting Engineers 
3000 Sand Hill Road 
Henlo Park, Calif. 94025 
ATTN: J. Iftenberg 

115 



In accordance with letter fro* DAEN-RDC, DAEN-ASI dated 
22 July 1977, Subject: Facsimile Catalog Cards for 
Laboratory Technical Publications, a facsiaile catalog 
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